Реакции с медным купоросом

Содержание
  1. Медный купорос
  2. Очистка
  3. Глубокая очистка
  4. Физические свойства
  5. Строение кристаллогидрата
  6. Термическое воздействие
  7. Растворимость
  8. Электролитическая диссоциация
  9. Реакция замещения
  10. Реакция с растворимыми основаниями (щелочами)
  11. Реакция обмена с другими солями
  12. Прочее
  13. Производство и применение
  14. Токсикология
  15. Сульфат меди и медный купорос, характеристика, свойства и химические реакции
  16. Краткая характеристика сульфата меди:
  17. Краткая характеристика медного купороса:
  18. Физические свойства сульфата меди:
  19. Физические свойства медного купороса:
  20. Химические свойства сульфата меди. Химические реакции сульфата меди и кристаллогидратов меди:
  21. Применение и использование сульфата меди и медного купороса:
  22. Почему кристаллы растут?
  23. Кристаллизация в холодильнике
  24. Кристаллы NaCl
  25. Реакции с медным купоросом
  26. Физические свойства
  27. Химические свойства сульфата меди (медного купороса)
  28. Получение данного вещества
  29. Применение медного купороса
  30. Кристаллы из медного купороса
  31. Медный купорос. Качественные реакции, проводимые с его помощью
  32. Как определить, что в растворе есть медный купорос?
  33. Заключение
  34. Подборка простых опытов с медным купоросом в домашних условиях
  35. Опыт с медным купоросом и железным гвоздем
  36. Взаимодействие с аммиаком
  37. Взаимодействие с гидроксидом натрия
  38. Красивые превращения глюкозы
  39. Денатурация (разрушение) белка
  40. Биуретовая реакция
  41. Взаимодействие с поваренной солью
  42. Забавный химический фокус
  43. Морозные узоры на стекле
  44. Выращиваем химический сад
  45. Непослушная пена

Медный купорос

Реакции с медным купоросом
                Медный купорос

В лаборатории CuSO4 можно получить действием концентрированной серной кислоты на медь при нагревании:

 Cu + 2H2SO4 → CuSO4 + SO2 ↑ + 2H2O

температура не должна превышать 60 °С, при большей температуре в значительных количествах образуется побочный продукт — сульфид меди(I):

 5Cu + 4H2SO4 → 3CuSO4 + Cu2S ↓ + 4H2O 

Также в лабораторных условиях сульфат меди (II) может быть получен реакцией нейтрализации гидроксида меди(II) серной кислотой, для получения сульфата меди высокой чистоты используют соответственно чистые реактивы:

 Cu(OH)2 + H2SO4 → CuSO4 + 2H2O

Чистый сульфат меди может быть получен следующим образом. В фарфоровую чашку наливают 120 мл дистиллированной воды, прибавляют 46 мл химически чистой серной кислоты плотностью 1,8 г/см3 и помещают в смесь 40 г чистой меди (например, электролитической).

Затем нагревают до 70—80 °С и при этой температуре в течение часа постепенно, порциями по 1 мл, прибавляют 11 мл конц. азотной кислоты. Если медь покроется кристаллами, прибавить 10—20 мл воды.

Когда реакция закончится (прекратится выделение пузырьков газа), остатки меди вынимают, а раствор упаривают до появления на поверхности пленки кристаллов и дают остыть. Выпавшие кристаллы следует 2—3 перекристаллизовать из дистиллированной воды и высушить.

Очистка

Очистить загрязненный или технический сульфат меди можно перекристаллизацией — вещество растворяется в кипящей дистиллированной воде до насыщения раствора, после чего охлаждается до приблизительно +5 °С.

Полученный осадок кристаллов отфильтровывается. Однако даже многократная перекристаллизация не позволяет избавиться от примеси соединений железа, которые являются наиболее распространенной примесью в сульфате меди.

Для полной очистки медный купорос кипятят с диоксидом свинца PbO2 или пероксидом бария BaO2, пока отфильтрованная проба раствора не покажет отсутствия железа. Затем раствор фильтруют и упаривают до появления на поверхности пленки кристаллов, после чего охлаждают для кристаллизации.

По Н. Шоорлю очистить сульфат меди можно так: к горячему раствору CuSO4 прибавить небольшие количества пероксида водорода H2O2 и гидроксида натрия NaOH, прокипятить и отфильтровать осадок. Выпавшие из фильтрата кристаллы дважды подвергаются перекристаллизации. Полученное вещество имеет чистоту не ниже квалификации «ХЧ».

Глубокая очистка

Существует более сложный способ очистки, позволяющий получить сульфат меди особой чистоты, с содержанием примесей около 2·10-4 %.

Для этого готовится водный, насыщенный при 20°С раствор сульфата меди (вода используются только бидистиллированная). В него добавляют перекись водорода в количестве 2-3 мл 30 % раствора на 1 литр, перемешивают, вносят свежеосаждённый основной карбонат меди в количестве 3-5 грамм, нагревают и кипятят 10 минут для разложения H2O2.

Затем раствор охлаждают до 30—35 °С, фильтруют и приливают 15 мл 3%-ного раствора диэтилдитиокарбамата натрия и выдерживают в мешалке три-четыре часа не понижая температуры. Далее раствор быстро процеживают от крупных хлопьев комплексов и вносят активированный уголь БАУ-А на полчаса при перемешивании. Затем раствор следует отфильтровать вакуумным методом.

Дальше в раствор CuSO4 приливают на 1 л около 200 мл насыщенного раствора NaCl квалификации «Ч» и вносят чистый алюминий в проволоке или обрезках до полного прохождения реакции, выделения меди и просветления раствора (при этом выделяется водород).

Выделенную медь отделяют от алюминия взбалтыванием, осадок промывают декантацией сперва водой затем заливают горячим 5—10 % раствором соляной кислоты ХЧ при взбалтывании в течение часа и постоянным подогревом до 70—80 °С, затем промывают водой и заливают 10—15%-ной серной кислотой (ОСЧ 20-4) на час с подогревом при том же интервале температур.

От степени и тщательности промывания кислотами, а также квалификации применяемых далее реактивов зависит чистота дальнейших продуктов.

После промывки кислотами медь снова моют водой и растворяют в 15—20%-ной серной кислоте (ОСЧ 20-4) без её большого избытка с добавлением перекиси водорода (ОСЧ 15-3).

После прохождения реакции полученный кислый раствор сульфата меди кипятят для разложения избытка перекиси и нейтрализуют до полного растворения вначале выпавшего осадка перегнанным 25%-ным раствором аммиака (ОСЧ 25-5) или приливают раствор карбоната аммония, очищенного комплексно-адсорбционным методом до особо чистого.

После выстаивания в течение суток раствор медленно фильтруют. В фильтрат добавляют серную кислоту (ОСЧ) до полного выпадения голубовато-зелёного осадка и выдерживают до укрупнения и перехода в зелёный основной сульфат меди.

Зелёный осадок выстаивают до компактности и тщательно промывают водой до полного удаления растворимых примесей.

Затем осадок растворяют в серной кислоте, фильтруют, устанавливают рН=2,5—3,0 и перекристаллизовывают два раза при быстром охлаждении, причем при охлаждении раствор каждый раз перемешивают для получения более мелких кристаллов сульфата меди.

Выпавшие кристаллы переносят на воронку Бюхнера и удаляют остатки маточного раствора с помощью водоструйного насоса. Третья кристаллизация проводится без подкисления раствора с получением чуть более крупных и оформленных кристаллов.

Физические свойства

Пентагидрат сульфата меди (II) (медный купорос) — синие прозрачные кристаллы триклинной сингонии. Плотность 2,284 г/см3. При температуре 110 °С отщепляется 4 молекулы воды, при 150 °С происходит полное обезвоживание.

Строение кристаллогидрата

Структура медного купороса приведена на рисунке. Как видно, вокруг иона меди координированы два аниона SO42− по осям и четыре молекулы воды (в плоскости), а пятая молекула воды играет роль мостиков, которые при помощи водородных связей объединяют молекулы воды из плоскости и сульфатную группу.

Растворимость CuSO4, г/100 г H2O

Термическое воздействие

При нагревании пентагидрат последовательно отщепляет две молекулы воды, переходя в тригидрат CuSO4·3H2O (этот процесс, выветривание, медленно идёт и при более низких температурах [в том числе при 20—25 °С]), затем в моногидрат (при 110 °С) CuSO4·H2O, и выше 258 °C образуется безводная соль.

Выше 650 °C становится интенсивным пиролиз безводного сульфата по реакции:

 2CuSO4 → t 2CuO + 2SO2 + O2 

Растворимость

Растворимость сульфата меди (II) по мере роста температуры проходит через плоский максимум, в течение которого растворимость соли почти не меняется (в интервале 80—200 °C). (см. рис.)

Как и все соли, образованные ионами слабого основания и сильной кислоты, сульфат меди (II) гидролизуется, (степень гидролиза в 0,01 М растворе при 15 °C составляет 0,05 %) и даёт кислую среду (pH указанного раствора 4,2). Константа диссоциации составляет 5⋅10−3.

Электролитическая диссоциация

CuSO4 — хорошо растворимая в воде соль и сильный электролит, в растворах сульфат меди(II) так же, как и все растворимые соли, диссоциирует в одну стадию:

 CuSO4 → Cu2+ + SO42− 

Реакция замещения

Реакция замещения возможна в водных растворах сульфата меди с использованием металлов активнее меди, стоящих левее меди в электрохимическом ряду напряжения металлов:

 CuSO4 + Zn → Cu ↓ + ZnSO4 

Реакция с растворимыми основаниями (щелочами)

Сульфат меди(II) реагирует с щелочами с образованием осадка гидроксида меди(II) голубого цвета:

 CuSO4 + 2KOH → Cu(OH)2 ↓ + K2SO4  CuSO4 + 2LiOH → Cu(OH)2 ↓ + Li2SO4 CuSO4 + 2NaOH → Cu(OH)2 ↓ + Na2SO4 

Реакция обмена с другими солями

Сульфат меди вступает также в обменные реакции по ионам Cu2+ и SO42-

 CuSO4 + BaCl2 → CuCl2 + BaSO4 ↓  CuSO4 + K2S → CuS ↓ + K2SO4

Прочее

С сульфатами щелочных металлов и аммония образует комплексные соли, например, Na2[Cu(SO4)2]·6H2O.

Ион Cu2+ окрашивает пламя в зелёный цвет.

Производство и применение

Друза кристаллов пентагидрата сульфата меди(II) CuSO4 · 5H2O, выращенная в домашних условияхМонокристалл пентагидрата 

Сульфат меди (II) — важнейшая из солей меди. Часто служит исходным сырьём для получения других соединений меди.

Безводный сульфат меди — хороший влагопоглотитель и может быть использован для абсолютирования этанола, осушения газов (в том числе воздуха) и как индикатор влажности.

В строительстве водный раствор сульфата меди применяется для нейтрализации последствий протечек, ликвидации пятен ржавчины, а также для удаления выделений солей («высолов») с кирпичных, бетонных и оштукатуренных поверхностей, а также как антисептическое и фунгицидное средство для предотвращения гниения древесины.

В сельском хозяйстве медный купорос применяется как антисептик, фунгицид и медно-серное удобрение. Для обеззараживания ран деревьев используется 1%-ный раствор (100 г на 10 л), который втирается в предварительно зачищенные поврежденные участки.

Против фитофтороза томатов и картофеля производятся опрыскивания посадок 0,2 % раствором (20 г на 10 л) при первых признаках заболевания, а также для профилактики при угрозе возникновения болезни (например, в сырую влажную погоду).

Раствором сульфата меди поливается почва для обеззараживания и восполнения недостатка серы и меди (5 г на 10 л).

Однако чаще медный купорос применяется в составе бордоской жидкости — основного сульфата меди CuSO4·3Cu(OH)2 против грибковых заболеваний и виноградной филлоксеры. Для этих целей сульфат меди(II) имеется в розничной торговле.

Для борьбы с цветением воды в водохранилищах также используется химическая обработка медным купоросом.

Также он применяется для изготовления минеральных красок, в медицине, как один из компонентов электролитических ванн для меднения и т. п. и в составе прядильных растворов в производстве ацетатного волокна.

В пищевой промышленности зарегистрирован в качестве пищевой добавки E519. Используется как фиксатор окраски и консервант.

В быту применяют для выведения пятен ржавчины на потолке после затоплений.

В пунктах скупки лома цветных металлов раствор медного купороса применяется для выявления цинка, марганца и магния в алюминиевых сплавах и нержавейке. При выявлении этих металлов появляются красные пятна.

Токсикология

Сульфат меди(II) является соединением с умеренной токсичностью и относится к классу опасности 4 (малоопасное вещество).

Смертельная доза медного купороса составляет от 45 до 125 граммов для взрослого человека перорально (при проглатывании), в зависимости от массы, состояния здоровья, иммунитета к избытку меди и от других факторов.

Признаки отравления становится заметным при разовом потреблении более 0,5 г соединения внутрь (т. н. токсическая доза). LD50 для крыс 612,9 мг/кг. Картина отравления при вдыхании аэрозолей более сложна.

Попадание на кожу сухого вещества безопасно, но его необходимо смыть. Аналогично при попадании растворов и увлажненного твердого вещества. При попадании в глаза необходимо обильно промыть их проточной водой (слабой струей).

При попадании в желудочно-кишечный тракт твердого вещества или концентрированных растворов необходимо промыть желудок пострадавшего 0,1 % раствором марганцовки, дать выпить пострадавшему солевое слабительное — сульфат магния 1—2 ложки, вызвать рвоту, дать мочегонное.

Кроме того, попадание в рот и желудок безводного вещества может вызвать термические ожоги.

Слабые растворы сульфата меди при приёме внутрь действуют как сильное рвотное средство и иногда применяются для провоцирования рвоты.

При работе с порошками и пылью сульфата меди (II), следует соблюдать осторожность и не допускать их пыления, необходимо использовать маску или респиратор, а после работы вымыть лицо.

Острая токсическая доза при вдыхании аэрозоля — 11 мг/кг.

При попадании сульфата меди через дыхательные пути в виде аэрозоля нужно вывести пострадавшего на свежий воздух, прополоскать рот водой и промыть крылья носа.

Хранить вещество следует в сухом прохладном месте, в плотно закрытой жесткой пластиковой или стеклянной упаковке, отдельно от лекарств, пищевых продуктов и кормов для животных, в недоступном для детей и животных месте.

Источник: https://chem.ru/mednyj-kuporos.html

Сульфат меди и медный купорос, характеристика, свойства и химические реакции

Реакции с медным купоросом

Сульфат меди – неорганическое вещество, имеет химическую формулу CuSO4.

Краткая характеристика сульфата меди

Краткая характеристика медного купороса

Физические свойства сульфата меди

Физические свойства медного купороса

Химические свойства сульфата меди

Химические реакции сульфата меди и кристаллогидратов меди

Применение и использование сульфата меди и медного купороса

Краткая характеристика сульфата меди:

Сульфат меди – неорганическое вещество белого цвета.

Химическая формула сульфата меди CuSO4.

Сульфат меди  – неорганическое химическое соединение, соль серной кислоты и меди.

Хорошо растворяется в воде. Растворение сульфата меди проходит со значительным выделением тепла.  Сульфат меди гидролизуется и даёт кислую среду.

С водой сульфат меди образует кристаллогидраты: пентагидрат сульфата меди CuSO4·5H2O, именуемый также медный купорос, тетрагидрат сульфата меди CuSO4·4H2O, тригидрат сульфата меди CuSO4·3H2O, гидрат сульфата меди CuSO4·H2O.

Растворим также в глицерине, метаноле, этиленгликоле. Не растворим в ацетоне, этаноле.

Гигроскопичен.

Сульфат меди негорюч, пожаро- и взрывобезопасен.

Сульфат меди является пищевой добавкой Е519.

В природе сульфат меди встречается в виде минералов халькантита (CuSO4·5H2O), халькокианита (CuSO4), бонаттита (CuSO4·3H2O), бутита (CuSO4·7H2O) и в составе некоторых других минералов.

Краткая характеристика медного купороса:

Медный купорос – неорганическое вещество синего цвета различных оттенков.

Химическая формула медного купороса CuSO4·5H2O.

Медный купорос – пентагидрат сульфата меди.

Хорошо растворяется в воде. Растворим также в глицерине, метаноле, этаноле, этиленгликоле.

На воздухе постепенно выветривается (теряет кристаллизационную воду).

Медный купорос негорюч, пожаро- и взрывобезопасен.

Медный купорос относится к веществам 2-го класса опасности в соответствии с ГОСТ 12.1.007.

Физические свойства сульфата меди:

Наименование параметра:Значение:
Химическая формулаCuSO4
Синонимы и названия иностранном языкеcopper(II) sulphate (сopper(II) sulfate (англ.)халькокианит (рус.)
Тип веществанеорганическое
Внешний видбесцветные ромбические кристаллы
Цветбесцветный, белый
Вкус—*
Запахбез запаха
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м33640
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см33,64
Температура кипения, °C
Температура плавления, °C
Температура разложения, °C650
Гигроскопичностьгигроскопичен
Молярная масса, г/моль159,609
Растворимость в воде (25 oС), г/100 г20,5

* Примечание:

— нет данных.

Физические свойства медного купороса:

Наименование параметра:Значение:
Химическая формулаCuSO4·5H2O
Синонимы и названия иностранном языкеsodium sulfate (англ.)copper(II) sulfate pentahydrate (англ.)меди(II) сульфат пентагидрат (рус.)медный купорос (рус.)медь сернокислая пятиводная (рус.)халькантит (рус.)
Тип веществанеорганическое
Внешний видсиние триклинные кристаллы
Цветсиний
Вкусгорьковато-металлический вяжущий
Запахбез запаха
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м32286
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см32,286
Температура кипения, °C—*
Температура плавления, °C
Температура разложения, °C100-250
Гигроскопичностьгигроскопичен
Молярная масса, г/моль249,685
Растворимость в воде (25 oС), г/100 г35,6

* Примечание:

— нет данных.

Химические свойства сульфата меди. Химические реакции сульфата меди и кристаллогидратов меди:

Химические свойства сульфата меди аналогичны свойствам сульфатов других металлов. Поэтому для него характерны следующие химические реакции:

1. реакция сульфата меди и железа:

Fe + CuSO4 → FeSO4 + Cu.

В результате реакции образуются сульфат железа и медь.

2. реакция сульфата меди и цинка:

Zn + CuSO4 → ZnSO4 + Cu.

В результате реакции образуются сульфат цинка и медь.

3. реакция сульфата меди и олова:

Sn + CuSO4 → SnSO4 + Cu.

В результате реакции образуются сульфат олова и медь.

4. реакция взаимодействия сульфата меди, меди и хлорида натрия:

CuSO4 + Cu + 2NaCl → 2CuCl + Na2SO4 (t =  70 °C).

В результате реакции образуются хлорид меди и сульфат натрия.

5. реакция взаимодействия сульфата меди и аммиака:

CuSO4 + 4NH3 → [Cu(NH3)4]SO4.

В результате реакции образуется сульфат тетраамминмеди (II).

6. реакция взаимодействия сульфата меди и гидроксида натрия:

CuSO4 + 2NaOH → Cu(OH)2 + Na2SO4.

В результате реакции образуются сульфат натрия и гидроксид меди. В ходе реакции используется разбавленный раствор гидроксида натрия.

7. реакция взаимодействия сульфата меди и гидроксида калия:

CuSO4 + 2KOH → Cu(OH)2 + K2SO4.

В результате реакции образуются сульфат калия и гидроксид меди.

8. реакция взаимодействия сульфата меди и гидроксида лития:

CuSO4 + 2LiOH → Cu(OH)2 + Li2SO4.

В результате реакции образуются сульфат лития и гидроксид меди.

9. реакция взаимодействия сульфата меди и гидроксида кальция:

Ca(OH)2 + CuSO4 → Cu(OH)2 + CaSO4.

В результате реакции образуются сульфат кальция и гидроксид меди.

10. реакция взаимодействия сульфата меди и сульфида калия:

K2S + CuSO4 → K2SO4 + CuS.

В результате реакции образуются сульфат калия и сульфид меди.

11. реакция взаимодействия сульфата меди и хлорида бария:

CuSO4 + BaCl2 → BaSO4 + CuCl2.

В результате реакции образуются сульфат бария и хлорид меди.

12. реакция взаимодействия сульфата меди и сульфита натрия:

Na2SO3 + CuSO4 → CuSO3 + Na2SO4.

В результате реакции образуются сульфат натрия и сульфит меди.

13. реакция взаимодействия сульфата меди и сульфата железа (II) :

2FeSO4 + CuSO4 → Cu + Fe2(SO4)3.

В результате реакции образуются медь и сульфат железа (III). В ходе реакции используется концентрированный раствор сульфата железа (II).

14. реакция термического разложения сульфата меди:

2CuSO4 → 2CuO + 2SO2 + O2 (t =  653-720 °C).

В результате реакции образуются оксид меди, оксид серы и кислород.

15. реакция термического разложения кристаллогидратов сульфата меди:

CuSO4•5H2O → CuSO4•4H2O + H2O (t =  105-111 °C).

Пентагидрат сульфата меди CuSO4·5H2O разлагается на тетрагидрат сульфата меди CuSO4·4H2O и воду.

CuSO4•4H2O → CuSO4•H2O + 3H2O (t =  150-190 °C).

Тетрагидрат сульфата меди CuSO4·4H2O разлагается на гидрат сульфата меди CuSO4·H2O и воду.

CuSO4•H2O → CuSO4 + H2O (t =  220-250 °C).

Гидрат сульфата меди CuSO4·H2O разлагается на сульфат меди CuSO4 и воду.

Применение и использование сульфата меди и медного купороса:

Сульфат меди и медный купорос используется во множестве отраслей промышленности и для бытовых нужд:

– в химической промышленности как исходное сырьё для получения других соединений меди;

– используется для осушения газов, в т.ч. воздуха;

– в строительстве водный раствор сульфата меди применяется для нейтрализации последствий протечек, для ликвидации пятен ржавчины, для удаления выделений солей («высолов») с кирпичных, бетонных и оштукатуренных поверхностей, а также как антисептическое и фунгицидное средство для предотвращения гниения древесины;

– в сельском хозяйстве медный купорос применяется как антисептик, фунгицид и медно-серное удобрение;

– в пищевой промышленности в качестве пищевой добавки 519 как фиксатор окраски и консервант;

– в быту для выведения пятен ржавчины на потолке после затоплений.

Примечание: © Фото //www.pexels.com, //pixabay.com

карта сайта

сульфат меди реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения масса взаимодействие сульфата меди 
реакции

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/sulfat-medi-i-mednyiy-kuporos-harakteristika-svoystva-i-himicheskie-reaktsii/

Почему кристаллы растут?

Сульфат меди относится к тем веществам, растворимость которых в воде при нагревании возрастает. Соответственно, при охлаждении растворимость наоборот падает, что приводит к выделению сульфата меди в виде красивых синих кристаллов гидрата CuSO4·5H2O. За счёт того, что охлаждение раствора происходит медленно, кристаллы вырастают довольно крупными.

Почему же при охлаждении раствора сульфат меди стремится образовать кристалл, а не опускается на дно в виде мелкого порошка? Кристаллы отличаются от аморфных твёрдых тел (например, сажи и стекла) тем, что составляющие его частицы находятся в нём в правильном геометрическом порядке друг относительно друга.

Такие строгие соответствия природе зачастую не по нраву. Однако именно подобная последовательность частиц внутри твёрдого тела позволяет им чувствовать себя предельно комфортно.

Это означает, что каждый атом максимально прочно связан со своим окружением, а все положительные заряды наиболее эффективно взаимодействуют со всеми отрицательными зарядами.

Маленькие синие кристаллы медного купороса, без сомнений, радуют взгляд. Но как насчёт того, чтобы вырастить действительно большой кристалл? Однако сделать это не так уж и просто.

В качестве ёмкости используйте стеклянный химический стакан или пластиковый стаканчик (тогда вы сможете греть его так же, как стакан с винной кислотой или сахаром в других опытах набора).

В первом случае вам понадобится около 30 грамм медного купороса CuSO4*5H2O. Его вы можете найти в строительном магазине либо в том, где продаются удобрения.

Если вы решили растить очень большой кристалл и делать это в стакане, приготовьте заранее 60-70 грамм сульфата меди.

Растворите весь медный купорос в горячей воде. Тщательно перемешивайте раствор до тех пор, пока не растворятся все кристаллики. В качестве «опоры» для кристалла используйте кусок медной проволоки, нитку или лучину.

Теперь запаситесь терпением! Большой кристалл может расти несколько дней!

Кристаллизация в холодильнике

Как температура окружающей среды влияет на скорость и результат кристаллизации? Вы можете это изучить! Повторите опыт, однако заготовьте сразу две пробирки с растворами сульфата меди. В каждую из них вам понадобится добавить по 5 грамм CuSO4*5H2O, поэтому используйте раствор и кристаллы из основного эксперимента.

Остановитесь после 9-го шага инструкции. Теперь одну из пробирок поставьте в стаканчик с горячей водой, как и указано в шаге 10, а вторую поместите в холодильник (температура внутри около 4 Co).

Подождите 1-2 часа. Сравните результаты. Где выросшие кристаллы крупнее? Где их больше и почему?

Кристаллы NaCl

Попробуйте вырастить кристалл из самой обычной поваренной соли – хлорида натрия NaCl.

Растворите 39 грамм соли в 100 мл кипятка. Тщательно перемешивайте раствор до тех пор, пока не растворятся все кристаллики. В качестве «опоры» для кристалла лучше всего использовать нитку, намотанную на лучину – опустите её конец в раствор. На конце нитки завяжите пару узелков.

Остаётся только ждать! Убедитесь, что стакан стоит в месте, где его никто не будет трясти и не опрокинет.

Известно, что многие химики-синтетики в рамках своей работы осваивают и применяют различные методы выращивания монокристаллов. Почему же это нужно и интересно профессиональным химикам?

Кроме некоторой эстетической составляющей («Я синтезировал вещество, и какие красивые кристаллы оно образует!»), есть непосредственная необходимость собирать молекулы новых, неизвестных веществ в правильные, упорядоченные монокристаллы (от греч. μόνος — один).

Вообще говоря, при синтезе вещества химику необходимо выяснить или подтвердить его структуру. И до тех пор, пока он этого не сделает, никто в мировом научном сообществе не согласится с его открытием.

Для этого есть много различных косвенных методов: по тому, как вещество ведёт себя под воздействием света, инфракрасного излучения, сильных магнитных полей и прочих физических воздействий, химики могут понять, в каком порядке связаны атомы, составляющие молекулы вещества.

Однако самым надёжным общепринятым подходом в определении структуры вещества является так называемый рентгеноструктурный анализ. Он позволяет непосредственно «сфотографировать» молекулы нового вещества, что сразу снимает все вопросы о его строении.

Несмотря на его эффективность, этот метод имеет одно очень существенное ограничение: вещество должно быть представлено в виде того самого монокристалла.

Следует понимать, что каждая молекула, даже если речь идёт об очень больших молекулах полимеров или белков, − это очень-очень маленькая частица, зафиксировать которую можно только с помощью особого оборудования и в специальных условиях.

При этом определение структуры отдельно взятой молекулы требует дополнительных ухищрений. Однако даже миллиграмм любого вещества содержит огромное множество одинаковых молекул.

Если заставить все молекулы одинаково отвечать на какое-то воздействие, а затем сложить все эти отклики, то зафиксировать такой суммарный сигнал будет уже намного проще.

Как упоминалось ранее, монокристаллы отличаются тем, что составляющие их частицы находятся в строго определённом порядке. Такая упорядоченность как раз и позволяет просуммировать отклик каждой молекулы на определённое воздействие, поскольку они все расположены в пространстве одинаковым образом.

Метод рентгеноструктурного анализа предполагает, что на молекулы вещества действует рентгеновское излучение. После такого воздействия эти лучи особенным образом изменяют своё направление, что непосредственно связано с расположением атомов в кристалле.

Анализируя полученную картину искривлённых лучей, учёные могут «достроить», как именно располагаются атомы в кристалле, которые вызвали такое изменение. Зная это, не составляет большого труда выяснить, как устроены молекулы.

Всё просто: если атом не входит в эту молекулу, в большинстве случаев он будет отдалён от всех атомов, которые в эту молекулу входят, на расстояние больше 3.5 ангстрем, что ровно в 100 000 000 раз меньше, чем 3.5 сантиметра.

Кстати, по забавному совпадению рентгеновское излучение используют также для исследования внутреннего устройства людей и многих других живых существ. Например, при переломах делают рентгеновский снимок повреждённой части тела, что позволяет узнать, где именно находится перелом и как его легче всего лечить.

Источник: https://melscience.com/RU-ru/experiments/copper-sulfate-crystals/

Реакции с медным купоросом

Реакции с медным купоросом

› Мед

Медный купорос является кристаллогидратом сульфата меди, то есть в структуру данного вещества входят еще и молекулы воды. Он обладает теми основными свойствами, которые характерны для обыкновенного купрум сульфата. Следует сказать, что это соль, поэтому для нее характерно химическое поведение, которым отличаются многие другие вещества данной группы.

Физические свойства

Медный купорос представляет собой твердое кристаллическое вещество синего цвета. Оно растворимо в воде. На одну молекулу сульфата купрума в структуре вещества приходится пять молекул воды. Безводный же он не обладает каким-либо цветом. В природе его можно встретить в виде некоторых минералов, таких как халькантит. Данный камень мало кому известен и редко используется.

Химические свойства сульфата меди (медного купороса)

Как и любой другой сульфат, медный может разлагаться под воздействием высоких температур. При такого рода реакции образуется оксид купрума, диоксид серы и кислород. Также сульфат меди, как и другие соли, может быть участником реакции замещения.

При такого рода взаимодействии более активный металл, который стоит левее купрума в электрохимическом ряду активности, вытесняет атом меди из соединения и занимает его место. К примеру, добавив натрий к рассматриваемому веществу, можно получить сульфат натрия и медь, которая выпадет в осадок.

Кроме того, данное вещество способно реагировать с основными и кислотными гидроксидами, а также другими солями. Для примера можно привести реакцию купрум сульфата с гидроксидом кальция — основанием. В результате этого взаимодействия выделяется гидроксид меди и сульфат кальция.

В качестве примера реакции этой соли с кислотой можно взять взаимодействие ее с фосфорной, в результате которого образуется фосфат меди и сульфатная кислота. При смешивании сульфата меди с раствором другой соли происходит реакция обмена.

То есть, если добавить к нему, к примеру, хлорид бария, то можно получить хлорид меди и сульфат бария, выпадающий в осадок (если один из продуктов не является осадком, газом или водой, реакция не сможет осуществиться).

Получение данного вещества

Медный купорос можно получить с помощью двух основных способов. Первый — это взаимодействие гидроксида меди с концентрированной сульфатной кислотой. При этом выделяется также значительное количество воды, часть которой идет на гидратацию.

Второй метод получения данного вещества — взаимодействие концентрированной серной кислоты непосредственно с медью. Такого рода реакция может осуществиться только при специфических условиях в виде повышенной температуры.

Также возможно осуществить реакцию между оксидом меди и сульфатной кислотой, в результате которой также образуется нужное вещество и вода. Кроме того, медный купорос получают посредством обжига сульфитов меди.

Применение медного купороса

Данное вещество нашло свое основное применение в садоводческой сфере — оно используется для защиты растений от болезней и вредителей благодаря своим антисептическим и дезинфицирующим средствам. Также данное вещество широко применяется в сельском хозяйстве, так как с его помощью можно повысить морозоустойчивость и иммунитет растений к грибкам.

Кроме того, медный купорос используют в металлургии, а также в строительстве. Им пропитывают древесину для придания ей огнеупорных свойств. В пищевой промышленности его часто используют как консервант.

Кроме всего перечисленного выше, медный купорос применяют для изготовления красок, для проведения качественных реакций на катионы цинка, марганца и магния.

Кристаллы из медного купороса

Интересным и увлекательным для детей занятием является выращивание кристаллов из разнообразных веществ. Сырьем для такого занимательного эксперимента может послужить много разных соединений, в том числе кухонная соль, а также медный купорос.

Свойства данного вещества позволяют вырастить из его порошка, купленного в любом магазине для садоводов, большой кристалл. Для этого не нужно будет прилагать слишком много усилий. Чтобы вырастить кристалл медного купороса, нужно взять любую емкость.

В нее следует налить воду и засыпать сам порошок, при этом нагревая жидкость, чтобы способствовать более быстрому растворению в ней вещества. Добавлять медный купорос нужно, покуда возможно его растворение в воде. Таким образом мы получаем очень насыщенный раствор.

Затем можно оставить его так, просто накрыв чем-либо, а можно закрепить на крышке с внутренней стороны нитку с подвешенной на ней бусиной или пуговицей, чтобы она ровно висела — таким образом кристаллы будут расти на нитке, а не на дне емкости. Нужно следить за тем, чтобы ее не передвигали с места на место, иначе ничего не получится.

Каждый день или раз в несколько дней нужно понемногу добавлять в раствор медный купорос для поддержания высокой насыщенности, чтобы кристаллы не начали снова растворяться в воде. Примерно после двух недель подобных манипуляций, если сделать все правильно, можно получить довольно большой кристалл.

Медный купорос. Качественные реакции, проводимые с его помощью

С помощью данного вещества можно определить наличие катионов цинка. Если добавить в раствор медный купорос, и при этом выпадет мутный осадок, значит, там содержатся соединения цинка. Также с помощью рассматриваемого вещества можно определить наличие катионов магния. В этом случае в растворе также выпадет осадок.

Как определить, что в растворе есть медный купорос?

Самой распространенной качественной реакцией, которую возможно провести в домашних условиях, является взаимодействие раствора с железом. Можно взять любое железное изделие. Если, опустив его на некоторое время в раствор, вы увидите на нем красноватый налет, значит, медный купорос присутствует.

Данный налет представляет собой медь, которая осела на железном изделии. Сульфат железа, который также выделяется вследствие данной реакции замещения, уходит в тестируемый раствор.

Еще одним, уже менее доступным вариантом для определения наличия данного вещества в растворе является реакция с любой растворимой солью бария. При этом сульфат бария выпадет в осадок. Также можно провести тест с помощью любого алюминиевого изделия по тому же принципу, что и первая описанная реакция.

В этом случае также должен образоваться налет красноватого цвета, который свидетельствует о замещении атомами алюминия атомов купрума и образовании сульфата алюминия и чистой меди.

Заключение

Если кратко подвести итог всему написанному выше, можно сказать, что медный купорос является очень широко распространенным и всем известным веществом, которое применяется во многих сферах человеческой жизни.

Он может находить свое применение как в разнообразных отраслях промышленности, так и в домашних условиях: в развлекательных целях или для ухода за растениями. Также данное вещество пользуется популярностью у тех людей, кто разводит рыбок, — оно предохраняет аквариум от загрязнения микроводорослями.

Сульфат купрума легко получить в лабораторных условиях. Он имеет невысокую себестоимость, вследствие чего он и получил такое широкое распространение и применяется в самых различных целях.

Подборка простых опытов с медным купоросом в домашних условиях

В прошлой статье я рассказывала про медный купорос, что это такое, где применяется и даже как некоторые им лечатся (вот только не знаю, вылечиваются ли?), а сегодня предлагаю поделать опыты с медным купоросом в домашних условиях.

Обо всех этих экспериментах я уже рассказывала в рубрике «Похимичим», так что сейчас, по сути, просто собираю их все вместе, так как они раскиданы по разным статьям.

В начале, как обычно предупреждаю о соблюдении правил техники безопасности!

Напоминаю, что практически все опыты (кроме одного) мы будем делать с раствором медного купороса. Чтобы его получить, растворите половину чайной ложки в стакане воды – этого вполне хватит на все сегодняшние эксперименты. Предлагаю начать с самого простого и похимичить гвоздем.

Опыт с медным купоросом и железным гвоздем

Все очень просто – в раствор купороса опускаете чистый (имеется ввиду без ржавчины и масла) железный гвоздь и ждете. Химическая реакция пройдет сама, без вашего дальнейшего участия. Первые результаты будут видны уже через несколько минут. Ну а самым терпеливым советую «забыть» про происходящее на пару недель. Будет очень интересно.

Подробнее читайте вот в этой статье.

Взаимодействие с аммиаком

В светло-голубой раствор капаем немного аммиака. Вуаля! Готов ярко-фиолетовый раствор аммиаката меди. Не забивайте голову названием, просто наслаждайтесь красивым зрелищем.

Взаимодействие с гидроксидом натрия

Добавляем немного гидроксида натрия. Получается красивый голубой осадок гидроксида меди. Не выливайте его, он нам пригодится в следующем опыте.

Красивые превращения глюкозы

Вам понадобится аптечный раствор чистой глюкозы. Приливаем ее к осадку, полученному в предыдущем опыте, и аккуратно нагреваем. Ярко-голубой осадок постепенно превратится сначала в желтый раствор, затем – в красный.

Делать все нужно достаточно внимательно и аккуратно, поэтому посмотрите, как я делала.

Денатурация (разрушение) белка

Берем сырое яйцо и отделяем белок от желтка. Белок помещаем в стакан, добавляем немного воды,перемешиваем и делим на две части, то есть на два эксперимента. К первой части приливаем немного медного купороса. После перемешивания получаем вот такую невразумительную массу:

Биуретовая реакция

Ко второй части белка добавляем немного гидроксида натрия, а потом – несколько капель купороса. Получаем ярко-фиолетовую окраску раствора.

Подробно об этих реакциях можно прочитать вот здесь.

Взаимодействие с поваренной солью

Разводим в стакане с водой немного обычной поваренной соли и смешиваем с раствором медного купороса. Любуемся изумрудно-зеленой окраской получившегося раствора.

Желающих продолжить этот опыт дальше отсылаю к статье «Цветные реакции». В ней вы найдете много интересного.

Забавный химический фокус

Он потребует от вас некоторых приготовлений (минут на пять), но оно того стоит. Нужна всего лишь старая сковородка и кристаллический (не раствор!) медный купорос. Будем с помощью воды превращать белое вещество в синее. Подробная инструкция здесь.

Морозные узоры на стекле

Хоть сейчас и лето, но вы легко можете создать на стекле самые настоящие морозные узоры.

Выращиваем химический сад

Еще один очень простой опыт. Единственное, что от вас потребуется, это, как и в случае с гвоздем, терпение. Ну и немного обычного канцелярского силикатного клея. Подробности в статье «Химические водоросли».

Непослушная пена

Ну и под занавес, эффектный опыт по получению пены. Его можно делать в двух вариантах – с медным купоросом либо с марганцовкой. По сути, процессы идут одинаковые и результат также практически одинаковый. Правда, придется побегать по аптекам в поисках гидроперита. Если вам улыбнется удача и вы его купите, то внимательно читайте вот эту статью и химичьте в свое удовольствие!

Источник: https://argo-nvrsk.ru/med/reakczii-s-mednym-kuporosom

Все полезное агроному
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: